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Germany 
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Abstract. Monte Carlo simulations are presented for one-dimensional self-avoiding Levy 
Rights. They are in perfect agreement with the predictions of Flory theory. Some field- 
theoretic predictions are also verified, although much less clearly. In particular, E 

expansions are available but their range of applicability seems to be small. 

Critical phenomena in systems with power-behaved long-range forces have been studied 
since the early days of the renormalisation group [ 1, 21. But only recently have the 
simplest such systems, namely self-avoiding Levy flights, been simulated by Monte 
Carlo techniques in order to verify these predictions [3]. 

Levy flights are similar to random walks, except that the steps are not necessarily 
to next neighbours [4]. Instead, the probability for a step to have a length greater than 
some r is assumed to decrease like 7 with O < a < 2 ,  for r + m .  In analogy to the 
relation between self-avoiding walks and spin systems found by de Gennes [5], the 
critical behaviour of self-avoiding Levy flights (‘Levy-sAws’) is described by the n-vector 
model with n = 0 and with a potential decreasing l r - ‘ - d  ( d  is the dimensionality of 
space) [3]. 

Starting from this latter connection, critical exponents can be calculated for d = 20, 
using expansions in E = 2 a  - d up to second order [ 1,2]. We should mention that 
d = ?a is the upper critical dimension. Above dcrir, one has v = l /a and y = 1. Here, 
v is defined via the geometric average of the end-to-end distance of N-step flights, by 
(log R N )  - v log N, and y is defined via the survival probability of an N-step flight as 

(1) p N  - e-F”y-1 

The most important result of references [ l ,  21 is that the exponent 77, related to v 
and y by the standard scaling relation y = (2 - v)v, is unrenormalised to all orders of 
perturbation theory. Since its bare value is 7 = 2 -a, we would predict y = vu. 

In a subsequent paper by Sak [6], it was shown that this can only be true as long 
as a is smaller than 2 - vSAw.  Above that value, he argued that 7 = vsAw. For 
one-dimensional ordinary SAWS,  one has y = U = 1. Thus, one has in one dimension 
T~~~ = 1. Taking these two predictions together, we obtain therefore for Levy-sAws in 
one dimension 

f o r a <  1 .={Y”” for a> 1 

Notice that the claim of reference [3] that the critical exponents are the same as in 
ordinary SAWS if U > 2 - (see also figure 3 of [3]) is wrong. 
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In addition to this, m e  has the E expansions of references [ 1,2]. For fixed d these 
authors obtained 

*. . .) E E' 304-5d2 v = -  I--+- :( 2d d 2  256 

which corresponds to the following expansion for fixed U :  

E E 2  
v =- 1 +-+--(19 - : U * ) * .  . . :( 4u 64u2 

(3) 

(4) 

In order to test these predictions, I have performed Monte Carlo simulations in 
one dimension. The probabilities of making steps from x to x * r ( r  = 1,2, . . .) were 
chosen as ( r-' - ( r  + 1)-')/2. The flights stopped whenever a step ended at an already 
visited site. In order to overcome this attrition, I used a standard enrichment method 
[7]. Typically, the longest flights had been 50 and 100 steps. The number of such 
flights for each value of U was -3 x 104-105. This is -1-2 orders of magnitude higher 
statistics than in reference [3]. The CPU time for each value of U was -2-3 h on a 
CYBER 1701720. 

In figure 1, I show the quantity 

- 1  N exp(log R N )  

vN ='I exp(1og R , ) +  exp(1og R N ) ] +  E?=-; exp(1og R, )  

plotted against 11 N. We would expect that v N  + v for N + 00, with corrections - 1/ N 
if the corrections to scaling have exponent > 1, with logarithmic corrections for U = 112 
and U = 2, and with corrections - N-A with 0 < A  < 1 elsewhere. I use this version of 
the ratio method instead of the more conventional log-log plots since (i) one can better 
read off error estimates, and (ii) corrections to scaling can easily be overlooked in 

The extrapolated values of v are shown in figure 2. Also shown in that figure are 
the predictions of equations (3 )  (broken curve) and (4) (chain curve). We see that 
these expansions have very little predictive power, unless they could be combined with 
some other (non-perturbative) result. 

In  contrast to this, our results serve as a very stringent check of Flory theory. 
Following Flory's theory for ordinary SAWS [8 ,9 ] ,  we estimate the potential energy of 
an N-link chain with radius R as 

log-log plots. 

Epo,K N2/ R d  ( 6 )  

and its entropy as 

S a R " / N .  

Minimising the free energy then yields R - N u  with 

3 
u+d' 

v=- 

(7) 

For d = 2u, this gives v = l / u  in agreement with field theory. 
For U =  112, Flory theory also seems to agree with the data, although it disagrees 

there with the E expansions, but the Monte Carlo data are not really precise enough 
to decide between them on the one hand and Flory theory on the other. 
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Figure 1. The quantity uN defined in equation ( 5 ) ,  plotted against 1/ N. The extrapolation 
towards 1/ N + 0 gives the critical exponent U. 

Finally, the Monte Carlo data were also used to estimate the exponent y. From 
equation ( l ) ,  one finds that 

Values of AN for U = 1.5 are plotted against 1/ N in figure 3. From equation (9), we 
see that the slope of AN at 1/ N = 0 is just y - 1. The resulting value of y is plotted 
in figure 4, together with those obtained for other values of U. In this figure, the 
predictions of the E expansion are also plotted. Again the comparison is inconclusive. 

Also shown in figure 4 are the predictions of equation ( 2 ) .  We see that they are 
clearly supported. In particular, the alternative prediction of reference [ 101 is clearly 
ruled out. 

Summarising we can say that some of the field theoretic results for the problem at 
hand have rather poor predictive power. This is in contrast to Flory theory which 
makes simple, clear-cut, and at least approximately correct predictions-in spite of its 
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Figure 2. Monte Carlo estimates of U obtained from extrapolations in figure 1 (dots with 
error bars), compared to various theoretical predictions. Full curve: Flory theory, equation 
(8); broken curve: E expansion, equation ( 3 ) ;  chain curve: E expansion, equation (4). 
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Figure 3. The quantity A, defined in equation (9) for U =  1.5 plotted against 1/N. The 
slope at I/N-+O gives y - 1 .  

inherent flaws [9] .  The only field theoretic prediction which is clearly supported by 
the data is equation ( 2 ) .  

These results leave open the question whether models with power-behaved long- 
range interactions can in general serve as tests of E expansions [3]. This would be 
very useful, as other models (ordinary and directed percolation) with long-range 
interactions can also be formulated as interacting Levy flights, and could be studied 
by similar Monte Carlo methods. The upper critical dimension for long-range percola- 
tion is dCri, = 3a, while for directed percolation it is 2a. 
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Figure 4. Critical exponent y plotted against U. Full points: Monte Carlo estimates from 
figure 3; broken curve: E expansion, equation (7), reference [ I ] ;  chain curve: E expansion, 
equation (9), reference [I] ;  open points: predictions of equation (2). 

I am indebted to the referee for pointing out an important error in the original 
manuscript. 
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